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Abstract
We study the statistics of the magnetic responses in mesoscopic spin-glass
samples based on a class of mean-field models. The magnetization of a given
sample grows in a step-wise manner as the external magnetic field is increased,
providing a fingerprint of a given sample. We show that the statistics of sample-
to-sample fluctuations of linear and nonlinear susceptibilities encode in compact
ways basic scales of the steps: typical height, width and spacing. In the
thermodynamic limit, the spacing between the steps vanishes, leading to chaotic
changes of underlying equilibrium states by arbitrarily small but finite variations
of the applied field while the magnetization per spin at a given external field
converges to a self-averaging value. We also discuss possible modifications
needed in realistic finite-dimensional systems guided by a Migdal–Kadanoff
renormalization group analysis.

1. Introduction

Magnetization in frustrated magnets often shows interesting nonlinear responses under
variation of external magnetic field, such as the devilish staircases [1]. Although such a feature
is seemingly absent in spin-glasses, an early numerical study [2] of the Sherrington–Kirkpatrik
(SK) model has suggested that mesoscopic spin-glass samples may exhibit characteristic
step-wise responses. Measurements of conductance fluctuations in a metallic spin-glass [3]
have revealed rich aspects of magnetic fluctuations at mesoscopic scales including changes
of fluctuations under variation of magnetic field. On the other hand it is well known that
variations of the applied field by a very small amount can strongly perturb the relaxation
process manifested as the well known difference between field-cooled and zero-field-cooled
magnetization [4] and rejuvenations induced by variations of magnetic field [5, 6]. Since the
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Figure 1. Magnetic responses in some samples of finite-sized spin-glass models. Magnetization
per spin m = M/N with M = ∑

i 〈Si 〉 of (a) p = 3 Ising MFSG model of N = 16 spins at
T = 0.1 and (b) the Edwards–Anderson Ising spin-glass model on a hierarchical lattice of sizes
L = 4, 8, 16 at T/Tc = 0.1. Data in (a) and (b) are obtained by taking traces over the Ising spin
variables numerically. In (a) the spikes are the linear susceptibilities χ = N−1(

〈
M2

〉 − 〈M〉2)/T
and the dotted line is the disorder-average of the magnetization curve. Typical spacing between the
steps is hs ∼ Tc/

√
NqEA (see section 2). A macroscopic sample N � 1 will have a magnetization

curve with infinitely many steps which is indistinguishable with the disorder-averaged one. In (b)
the spacing between the steps is hs ∼ ϒ/

√
qEA L−ζ (see section 3). (NB: The model in (b) has

S ↔ −S symmetry so that 〈M〉0 = 0 in each sample.)

(This figure is in colour only in the electronic version)

length scales explored in these experiments are at most 10–100 lattice spacings because of the
slow dynamics, such experiments are also probing mesoscopic scales. In order to understand
better the magnetic responses in mesoscopic spin-glass samples, we study the problem based
on a class of mean-field models (section 2) and a Migdal–Kadanoff renormalization group
(MKRG) scheme (section 3).

2. Mean-field theoretical approach

We consider a class of mean-field spin-glass (MFSG) models with p-spin quenched random
interactions Ji1,...,i p and uniform external field h,

H = −
∑

i1<i2<···i p

Ji1,...,i p Si1 . . . Si p − h
∑

i

Si . (1)

with Ising spins Si (i = 1, . . . , N). The coupling Ji1,...,i p follows a Gaussian distribution with

zero mean and variance J
√

p!
2N p−1 . In the following we denote thermal averages under external

field h as 〈· · ·〉h and disorder-averages, i.e. averages over different realizations of the spin-glass
sample, as [|· · ·|]av. We denote inverse temperature as β = 1/T .

We consider spin-glass phases of the family of p > 2 models [7, 8] characterized by one-
step replica symmetry breaking (1RSB). Compared with the full RSB phases (e.g. such as that
of the SK model (p = 2)) 1RSB phases are easier to analyse.

As shown in figure 1, the magnetization exhibits step-wise responses resembling very
much the one observed in the SK model [2]. A natural scenario is that it reflects level-
crossings of low-lying metastable states induced by changes of the external fields. Since the
susceptibilities are significant only in the close vicinities of the steps, the presence of the steps
appears to be intimately related to the result of the RSB theory [9] that linear susceptibilities in
mean-field spin-glass models are non-self-averaging [10]. On the other hand, in a macroscopic
sample the response must be self-averaging. This may be realized by vanishing of the spacing
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between the steps as the system size is increased [2, 10]. Then it means infinitely large number
of level-crossings or ‘first-order phase transitions’ underly an apparently smooth macroscopic
response. Most probably they lead to chaotic changes of the equilibrium states. We clarify the
above expectations on a firmer ground within the class of mean-field models characterized by
1RSB.

We begin by considering a generalized complexity [11], �( f, m) = 1
N

∑
α δ(mα −

m)δ( fα − f ), where fα , mα are free-energy per spin and magnetization per spin of a metastable
state (TAP state) α. As we reported recently in [11], it can be shown that under zero external
field h = 0, close to the zero complexity plane �( f, m) = 0,

eN�( f,m) ∝ exF− M2

2NqEA (2)

with F = N f and M = Nm. For simplicity we have chosen the minimum free-energy to be
0. qEA is the Edwards–Anderson (EA) order parameter and the parameter x � 0 is identified to
the x parameter which characterizes RSB. In the family of p > 2 models which exhibit 1RSB
one finds x = 1/Tc, with Tc being the critical temperature.

Let us first recall the magnetic response at macroscopic scales. Usually one computes
it as follows. First one computes the thermodynamic free-energy under finite external field
h in the thermodynamic limit. Then one takes derivatives of it with respect to the external
field h and obtains the macroscopic magnetization which is self-averaging by definition. As
we reported in [11], the generalized complexity equation (2) allows one to obtain the same
macroscopic response. The crucial point is that at any value of the field h the relevant group
of TAP states which dominate the equilibrium measure in the glassy phase must have zero
complexity, � = 0. The macroscopic response is obtained by considering minimization of the
total free-energy f −hm on the zero complexity line �( f, m) = 0. Then one finds that variation
of the field h induces extensive level-crossings [11]: an arbitrary small but finite variation of h
select different groups of TAP states with different values of the f and m. Since they certainly
have zero overlap with respect to each other, chaos underlies the smooth macroscopic response.

Now we turn to mesoscopic responses. We will not take the thermodynamic limit N → ∞
from the beginning but rather keep it large but finite and consider the response to very small
variation of the applied field.

First let us label the TAP states as l = 0, 1, 2, . . . such that their free-energies Fl s are
ordered as F0 � F1 � · · ·. An important piece of information is the distribution of the gaps
between the free-energy levels 	Fl = Fl − Fl−1(l = 1, 2, . . .). Note that equation (2) means
that the free-energies follow an exponential distribution. Recently it has been proved on general
grounds [12] that the gaps between such ordered random variables drawn from an exponential
distribution function follow level-dependent exponential distributions. In our present problem
the distribution functions reads as ρl(	Fl) = T −1

c exp(−l 	Fl
Tc

). The magnetization of the lth
state, which we denote as Ml , is independent of Fl and follows a Gaussian distribution with
zero mean and variance

√
NqEA. (See equation (2).)

Let us consider the evolution of the low-lying TAP state under variation of the external field
h. We assume that TAP states can be continued under variation of h, which is plausible for the
1RSB models in which TAP states relevant in equilibrium are not marginal but questionable in
full RSB models since the relevant TAP states are marginal.

To obtain some basic insights we consider a two-level model which consists of only the
two lowest levels l = 0, 1. The free-energy gap F1 − F0 = 	F is only of order O(1) while the
difference in their magnetizations 	M = M1 − M0 is of order

√
N .

The response 〈M〉h − 〈M〉0 can be formally expanded in a power series of h as 〈M〉h −
〈M〉0 = ∑∞

k=0
χ̃k

k! hk χk ≡ ∂〈M〉h
∂h |h=0 = 	Mχ̃k(

h−hs
hw

) 1
hk

w
with χ̃k(y) ≡ ∂k

∂yk
1

1+e−y . Here we have
identified two characteristic scales of the external field, the ‘distance to critical field’, where
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a level-crossing and thus a step in the response takes place, hs ≡ 	F
	M ∼ O( Tc√

NqEA
), and the

width of thermal rounding of the step hw ≡ T
	M ∼ O( T√

NqEA
).

From the above expansion of the response we find that the linear and nonlinear
susceptibilities χk are significant only in the close vicinities of the step (see figure 1(a)).
Another important point suggested by the expansion is that the small field expansion will
converge only for small enough h/hw. This means that the static fluctuation dissipation
theorem (FDT), which assumes such an expansion, make sense only over the range of the
thermal width of steps hw which vanishes in the thermodynamic limit N → ∞.

Based on the above observations, the strength of sample-to-sample fluctuations of the
linear and nonlinear susceptibilities at h = 0 can be estimated roughly as follows. With
probability hw/hs ∼ O(T/Tc) a given sample has a ‘critical field’ hc within the range of
the thermal width hw around h = 0. With such a probability the sample has a significant
susceptibility χk ∼ 	Mh−k

w . As the result we obtain a generic scaling form for the disorder-
average of the lth moment of nth susceptibility as

[∣
∣χ l

k

∣
∣
]

av
∼ (	Mh−k

w )l hs

hw
∼ βkl

[
(NqEA)(1+k)/2

]l T

Tc
. (3)

Thus susceptibilities are dominated by rare events which happen with small probability T/Tc

and as a result they are non-self-averaging. Moreover, fluctuations of higher nonlinear
susceptibilities diverge strongly with increasing N , reflecting the ‘staircases’.

It can be proved [13] that the more generalized M-level model gives exact results up to
O((T/Tc)

M−1) by a systematic low-temperature expansion analysis. Thus the above scaling
based on the simple M = 2 level model shown above is actually correct up to O(T/Tc), which
is sufficient at low enough temperatures.

The anomalous scaling of the sample-to-sample fluctuations of the susceptibilities
equation (3) can be proved directly by the replica method without invoking the TAP
approach. Using the replica trick [9] we obtain an identity κk(M) = ∂k

∂(βδh)k log Z(T, δh) =
limn→0

∂k

∂(βδh)k
Zn(T,δh)

n |δh=0 where Z ≡ ∏
i {

∑
Si =±1} exp(−β(H − δh

∑
i Si )) is the partition

function with H being the Hamiltonian without probing field δh. κk(M) is the cumulant
correlation function of the magnetization M . The susceptibility χk is related to the cumulant as
χk = βkκk(M), which is nothing but the static FDT. Then disorder-averages of the lth moment
of χk are obtained as

[∣
∣χ l

k

∣
∣
]

av
= βkl lim

n1,n2,...,nl →0

∂k

∂(βδh1)k

∂k

∂(βδh2)k
· · · ∂k

∂(βδhl)k

[∣
∣Z n1

1 Z n2
2 . . . Z nl

l

∣
∣
]

av

n1n2 · · · nl

∣
∣
∣
∣
∣
δh=0

. (4)

We first evaluate the rhs of the above equation regarding n1, n2, . . . , nl as integers which
amounts to introducing l groups of replicas r = 1, 2, . . . , l which consist of n1, n2, . . . , nl

replicas. We label them by two indices such as (r, 1), (r, 2), . . . , (r, nr ). Within the class of
models which exhibit one RSB one can show in general [13] that,

[∣
∣Z n1

1 Z n2
2 . . . Z nl

l

∣
∣
]

av
= const

∑

SP

[
N(	2

eff)

2

l∑

r,s=1

βδhrβδhs

(r,nr )∑

α=(r,1)

(s,ns)∑

β=(s,1)

δiα,iβ

]

(5)

where we introduced index i as the label of clusters in a given one RSB saddle point (SP).
The sum

∑
SP stands for summation over SP solutions obtained by permutations of the Parisi’s

matrix. In the following we only consider the susceptibilities at h = 0 where the parameter
	eff is identical to the Edwards–Anderson order parameter qEA. The size of each cluster in the
one RSB ansatz is given by xT = T/Tc.

For the linear susceptibility we obtain the disorder-average as [|T χ1|]av = NqEAxT and the
disorder-average of the second moment

[∣
∣(T χ1)

2
∣
∣
]

av
= (NqEA)2xT . The results agree with the
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scaling equation (3). In particular, we find
√[∣

∣χ2
1

∣
∣
]

av
− [|χ1|]2

av/ [|χ1|]av = 1− xT , so that the linear
susceptibility is not self-averaging below Tc as found in the SK model [10].

Furthermore, for the nonlinear susceptibilities we find stronger sample-to-sample
fluctuations in agreement with equation (3). The average of the first nonlinear susceptibility
vanishes (

[∣
∣T 2χ2

∣
∣
]

av
= 0) for simple symmetry reasons. However, for the second moment we

obtained after tedious but straightforward computations
[∣
∣(T 2χ2)

2
∣
∣
]

av
= (NqEA)32xT (1 − xT ),

in agreement with the scaling equation (3).
Note that the results are obtained as polynomials of xT = T/Tc so that the expressions

can be regarded as low-temperature expansions. Indeed we performed the low-temperature
expansion analysis mentioned previously up to O((T/Tc)

2) and found precise agreements with
the above results up to that order [13].

3. Migdal–Kadanoff real space renormalization group approach

Let us now turn to an analysis of magnetization curves in an EA Ising spin-glass model defined
on a hierarchical lattice designed to mimic a d = 3 dimensional regular lattice of size L with
N = Ld=3 spins. The Hamiltonian of the model is the same as equation (1) but with p = 2
body spin–spin couplings given only on nearest-neighbour pairs. A real space renormalization
group procedure works exactly on the hierarchical lattice including also renormalization of the
magnetic field [14]. As shown in figure 1(b), the magnetization grows with increasing field in
a step-wise manner. The number of steps increases and the magnetization curve converges to a
self-averaging one as the system size N is increased. Interestingly these features are essentially
the same as in the mean-field case.

Variation of the field changes renormalized couplings and fields and thus induces level-
crossings of low-lying states leading to step-wise responses. Low-lying states which are
related to each other by cluster flips or droplet excitations [15] of a given length scale L have
differences in the magnetizations of order

√
N	eff with N = Ld . A subtle point is that the

typical energy gap between low-lying states is not Tc but now it is ϒLθ with stiffness constant
ϒ > 0 and stiffness exponent θ > 0. In the present d = 3 case θ � 0.26. Thus one finds again
hw ∼ T/

√
N	eff but hs ∼ ϒ/

√
	eff L−ζ with ζ = d/2 − θ .

Let us list below other important differences compared with the mean field case. (1)
Low-lying excitations exist not only on the scale L of the sample itself but on smaller scales
L/2, L/4, . . .. Since the linear susceptibility is dominated by contributions from short length
scales it becomes self-averaging while higher-order nonlinear susceptibilities can still be non-
self-averaging. (2) At strong fields |h| � hs , actually renormalized couplings at the scale L
of the samples vanish so that the samples behave as paramagnets [14] in agreement with the
prediction of the droplet-scaling theory [15]. For the length scales L = 4–16 of the sample
used in figure 1(b), hs = 0.18–0.03. It is interesting to note that step-wise responses continue
up to stronger fields. This is because renormalized fields acting on the scale L fluctuate on
variation of the applied field h due to level-crossings at smaller length scales where hs is larger.

4. Conclusion

To summarize, we analysed a class of mean-field models which exhibit 1RSB and found
analytically that the statistics of sample-to-sample fluctuations of linear and nonlinear
susceptibilities are indeed intimately related to the anticipated step-wise responses. The basic
scales of the steps (typical height

√
N	eff, width hw and spacing hs) are encoded in compact

ways in a scaling form. We compared the results with an MKRG analysis.
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